5.4. POPULATION ECOLOGY OF RUMEX OBTUSIFOLIUS
Leod Klimes

Introduction

Related species, species aggregates and the species consisting of two or more lower
taxonomic taxa serve as ideal models for comparative studies as the differences among
sister taxa which have been phylogenetically relatively recently isolated should reflect
adaptations to their specific habitat (Kuiper & Bos 1992). Unfortunately, the great
variation in the species, described by taxonomists, is sometimes not respected by popu-
lation ecologists. This is the situation with Rumex obtusifolius, a common weed which
has been intensively studied by numerous researchers since the 1960s. Four subspecies
differing in their geographical distribution are usually considered. However, this vari-
ability has not been respected in population studies so that it is often not clear with
which subspecies a particular paper deals.

The available data on ecological differentiation between R. obrusifolius subspecies
based on their distribution in an entire area (Rechinger 1964) and on their local distri-
bution (Klimes 1989) suggest that there are marked differences between the subspecies
in their distribution along basic environmental gradients. Thus, a differentiation in eco-
logical demands of R. obtusifolius subspecies can also be expected. The aim of this
study was to test the effect of the most important biotic and abiotic factors identified in
the floodplain of the LuZnice River on growth and reproduction of R. obtusifolius with
a special attention to differentiation between R. obmusifolius subspecies obtusifolius
and R. obtusifolius subspecies sylvestris (hereafter referred to as R. *obtusifolius and R.
*sylvestris). First, the variation of R. obtusifolius in the studied area is described and
the identified types are mapped. Using multivariate methods, the major environmental
factors governing the distribution of individual types are suggested. Then, the effects
of these environmental and biotic factors on the subspecies of R. obrusifolius are de-
scribed. Finally, an attempt is made to predict the distribution of R. obtusifolius in the
study area for the next several decades.

The plant

R. obtusifolius L. is a perennial herb with a tap root, a rosette of leaves, one to several
stems bearing numerous leaves, and a great number of small greenish flowers and
fruits inserted into three enlarged perianths (valves). R. obtusifolius is an anemo-
philous, self-compatible species. Most of its flowers are hermaphroditic and pro-
tandrous (Cavers & Harper 1964; Foster 1989). R. obtusifolius 1s a common weed of
European origin which has secondary spread over all continents except Antarctica.
Four infra-specific taxa with partly overlapping distribution are usually recognised
(Recl_lingcr 1932; Rechinger & Akeroyd 1992). Their taxonomic value is, however, un-
certain as individual specialists consider them as being either (i) independent species
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Ecological differentiation in R, obtusifolius in Fig. 5.17, Distribution of R. *obrusifolius (open circle) and R. *syivesris (full circle) in the LuZnice River

floodplain. R. *sylvesrris includes transitional types as the transitional plants are usually mixed with R
_ *sylvestris. Size of a circle corresponds to the number of plants in a square (1 10 2, 3 10 9, 10 to 149, 150 to
d introduced by Hill & Gauch (1980), was used to 499 and >500). The study area is delimited by a dashed line, woods are dotted, rectangles denote buildings.
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Fig. 5.15. DCA ordination of 186 squares based on presence/absence data on vascular plants. In cach square
a single taxon of Rumex was present.
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The nature of the distinguished taxa

Populations of R, obmusifolius in the studied arca differ markedly in morphological
variation. There are rather uniform populations in the floodplain as well as populations
which include both morphological extremes and transitions along the *obtusifolius
*sylvestris continuum. The nature of the transitional plants is unclear. R. *transiens
has been deseribed as a taxon morphologically intermediate between R, *obrusifolius
and R. *sylvesiris. However, some populations of R. obtusifolius morphologically re-
sembling R. *wransiens are according to Snogerup (1994) of recent hybridogeneous ori-
gin. So far, no attempt has been made to elucidate the relationships between individual
varieties of the species using experimental approaches. Therefore, it 1s not clear
whether hybridisation takes place among races and what is the origin of the transitional
variety (Snogerup 1994),

This investigation tested the hypothesis of hybridogeneous origin of transitional
types between R. *obtusifolius and R. *sylvestris. The idea behind the experiment was:
IER. *transiens is a stabilised hybrid then artificial hybridisation of R. *obtusifolius and
R. *sylvestris should also produce types differing from R. *transiens and the range of
variation of R. *ransiens observed in the field should be narrower than that of Fl and
[2 plants (Stace 1975b).

Manipulation with flowers of R. obtusifolius is difficult due to the high number of
minute flowers growing in whorls (Cavers & Harper 1964) and the fact that pollen
grains are casily released from stamens if the plant is not treated cautiously. However,
some flowers of stressed plants as well as the very first flowers on some plants are
male-sterile, whereas the last-flowering flowers on the top of the inflorescence are
sometimes males (pers. observ,) which makes hand-pollination feasible. Three mor-
phologically typical plants of R. *obtusifolius and R. *sylvestris were sclected in the
field and transferred to the field station 30 km from the study arca, The following year,
when the plants were flowering, the branches with male-sterile flowers were isolated
and all buds with hermaphrodite flowers were removed. This can be done just before
flowering as a flower bud with hermaphrodite flowers is bigger than the bud with
male-sterile flowers. After hand-pollination the branches were bagged. In August,
when the seeds had ripened, individual fruits were collected and measured. Next year
the seeds were germinated. The F1 plants were used for back-crosses. Some branches
with hermaphrodite flowers on mother plants were bagged to get selfed seeds.

Proportion of successfully pollinated flowers was only about 30%. The low seed
outcome resulted from a lack of resources for the pollinated plant, presumably, as all
branches bearing hermaphrodite flowers and numerous leaflets were removed from the
inflorescence to make manipulation with the plants casier. Because of a small number
of plants in the F2 generation the results should be treated as preliminary. The mor-
phology of fruits from the Fl and F2 plants was always intermediate between R
*obusifolius and R. *sylvestris (Fig. 5.19 and Fig. 5.20). The hybrids from the F1 and
F2 generations showed very low within-plant variation. This contrasts with a great
variation reported from interspecific hybrids in the genus Rumex (Rechinger 1964;
Reichert 1971). Therefore, the results do not support the view that R. *svlvestris should
be treated as an independent species (ef. Czerepanoy 1981).

The hybridisation process (including back-crosses) leads to formation of hybrid
swarms which cover the whole range of variability between R. *obtusifolius and R.
*splvestris. In the field a similar pattern was found: morphologically extreme R.
*obsifolius and R, *sylvestris plants were linked with plants having transitional mor-
phology. They covered the whole gap between the two subspecies. As the
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Fig. 5.20. DCA ordination of R. obtusifolius fruits. O — R. *obtusifolius, S — R. *sylvestris. 00 — selfed seeds
of R. *obtusifolius, OS - R. *obtusifolius = R. *sylvestris, OSS  — backcross of R *sylvestris % R.
*obtusifolius with R. *sylvestris, OSOS 08 * 08, 008 - backeross of R. *obusifolius < R. *sylvestris with
R. *obtusifolius. Each point represents a single plant. Mean values were calculated for 25 variables and for

individual plants using 10 fruits per plant.

Ontogenesis and phenology
Germination under different nutrient concentrations

There is an extensive literature on germination of R. obtusifolius (e.g. Cavers & Harper
1964: Hand er al, 1982; Takaki ef al. 1985: Kendrick & Heeringa 1986; van Assche &
Vanlerberghe 1989). However, as far as [ am aware, there is no published data on dif-
ferences between subspecies. Germination of both subspecies is very successful under
optimum conditions. Under full light and at 20°C average temperature, 90 to 95% of
seeds of both subspecies germinate within 3 days to 2 weeks (Klimes, unpubl.). If the
seeds are shaded or temperature is suboptimal, germination percentage decreases (e.g.
Kendrick & Heeringa 1986). Germination in meadows which are often heavily ferti-
lised is affected by local concentration of nutrients. The extremely high nutrient con-
centration is sometimes even toxic to meadow plants. The effect of nutrient concentra-
tion on germination of R. obtusifolius was tested using Petri dishes in the laboratory.
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Fig. 5.21. The effect of nutrient concentration (Knopp's solution [lg of salts / 1] corresponds to 1) on
germination of Rumex obtusifolius subspecies obtusifolius and R. 0. subspecies sylvesiris.

Concentrations of the Knopp’s standard solution used in the experiment ranged be-
tween 0 and 16 following a geometric series where the concentration of 0 corre-
qundcd to destilled water and 1 denotes 1g of salts per litre.

; Ihe results of the experiment showed that low concentrations of nutrients have a
stimulative effect on germination whereas high concentrations slowed down germina-
tion and decreased the proportion of germinating seeds (Fig. 5.21). Germination of
seeds of lx'nh subspecies started at 0.25 and 0.13 concentrations (Fig. 5.21). The high-
c‘sl proportion of germinating seeds was observed at higher concentrations, at about |
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Fig. 5.22. Seed length of Rumex obtusifolius subspecies obtusifolius (), R. o. subspecies sylvestris (S), their
hybrid (OS), selfed plants and back-crosses (sce Fig. 5.20 for explanation). Columns with the same letter are
not significantly different at P=0.05 (LSD test).

Parent 1991; Biere 1991 a,b). Here, seeds of R. *obtusifolius, R. *sylvestris, their hy-
brid and back-crosses were germinated on Petri dishes and sown in pots in a green-
house. Cotyledons were measured when two next leaves were fully developed.

Seeds of a typical R. *ebtusifolius were approximately 33% longer than seeds of a
typical R. *svlvestris (Fig. 5.22). Seed width ranged between 1.4 and 1.85 mm in R.
*obtusifolius and between 1.2 and 1.4 mm in R. *sylvesiris. Because of the low within-
subspecies variation, the distributions of seed length and seed widths (not shown) for
R. *obtusifolius and R. *svlvestris did not overlap. Surprisingly, hybrids between the
subspecies as well as their descendants and plants from back-crosses had large seeds,
comparable in size to those of R. *obtusifolius.

Seedlings of R. *obtusifolius had wider cotyledons (mean = 3.08, SD = 0.28) than
those of R. *sylvestris (mean = 1.38, SD = 0.18) and grew much faster. In older plants
the difference diminished (see control plants in the experiment with alternating water-
table, Table 5.5). However, the proportion of plants which flowered in the first season
was much higher in R. *obusifolius than in R. *sylvestris. There was a marked differ-
ence between subspecies with respect to seed and cotyledon size. To a large extent,
this difference determined the growth of seedlings. Big seeds of R, *obtusifolius pro-
duced seedlings with large cotyledons whereas R. *svlvesiris had small seeds and seed-
lings.

The effect of seed size on germination and growth of seedlings in R obwusifolius has
been studied by Cideciyan & Malloch (1982) who found a strong correlation, How-
ever, it is not clear to what extent taxonomic diversity of the material used in the study
explains the observed variation in seed size and, consequently, growth of seedlings.
Cideciyan & Malloch (1982) divided the seeds into three size classes (<1.2 mm, 1.2 to
1.4 mm, =1.4 mm) with sieves. Therefore their seed size corresponds approximately to
seed width. Seeds of both subspecies used in this study were bigger than the smallest
size class of sceds defined by Cideciyan & Malloch (1982). It seems that their
populations included both subspecies and transient plants.

It is surprising that R. *sylvestris growing in closed-canopy vegetation produces
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Phenology

Discrimination in flowering time is an important factor limiting hybridisation of ¢op,.
patible species (Stace 1975a; Richards 1986). It was obscr\’c_d‘ both in the field and ip
laboratory experiments, that flowers and fruits of R. *obtusifolius develop two (o thyee
weeks carlier than those of R *svlvestris under the same conditions (unpubl.), Only
those plants of R. *obtusifolius which flowered in the late summer again, overlapped
with period of stigma receptivity in R, *sylvestris. However, the number of flowers and
seeds produced later in the season is much smaller than the number of seeds formed
during the first run. Moreover, R. *sylvesnis frequently colonises places which are
partly shaded. The shading is a factor promoting discrimination of flowering periods of
the two Rumex subspecies as the plants which are less illuminated develop slowly
'I‘i)crgff\rc: the delayed flowering in R. *splvestris is usually an efficient way to a\'nid
hybridisation with R *obuusifolius. Flowering time divergence is the most common
;;2;1'::\':"212?&‘;?3;%) I?;:;Jff{g?;: geln"cl_ﬂm_v between related taxa (Levin 1971
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Fig. 5.23. The effect of plant density on (a) total aboveground biomass and (b) mean aboveground biomass
per plant in Rumex *obtusifolius. Note logarithmic scale for plant density.

with logarithm of density (Fig. 5.23b). Vertical distribution of above-ground plant
biomass differed markedly along the range of densities (Fig. 5.24). Tallest plants were
recorded at medium densities. The height of the layer with the largest fraction of repro-
ductive tissues increased with plant density from 60-80 ¢m to 80-100 em. A difference
in the phenology of plants was recorded: plants at low densities developed faster than
those at higher densities. The basal leaves of plants at lower densities were often partly
dry, whereas those on plants at higher densities were still green at the time of harvest.
Biomass allocation to reproductive structures decreased with increasing density. The
proportion of stem biomass slightly increased with density as well as the proportion of
leaf biomass. The latter increased sharply at higher densities (Table 5.2).

In spite of the fact that (except for the lowest density) aboveground biomass of the
stand was approximately the same for all densities, concentration of basic nutrients in
leaves, roots, stems and fruits differed among densities (Fig. 5.25). Potassium concen-
trations decreased with density in roots and fruits, while in stems and leaves it was
density-independent. Calcium concentration in leaves and roots decreased markedly
with stand density. However, there was no trend for stems and fruits. Finally, phospho-
rus concentrations were independent of plant density. Soil pH decreased slowly but
significantly with plant density. Concentrations of potassium in the soil increased with
plant density, a trend which corresponded to the decreasing potassium concentrations
in roots and fruits as stand biomass was approximately the same for densities or five or
more plants/m® Similarly, non-significant changes in phosphorus concentrations in
soil along the plant density gradient corresponded with concentrations of phosphorus in
plants which were independent of density (except for roots which comprised a smaller
fraction of the total plant biomass — Fig. 5.26). Biomass allocation to stems indicates a
mechanical strength of a plant (Niklas 1994). In dense stands an increase in plant
height caused by ctiolation was not matched by an increase in allocation to stems. As a
consequence, the plants is weaker and may break. Thus an increase of mortality can be
expected (Ogden 1970; Hutchings & Barkham 1976). In R. obtusifolius a different pat-
tern was observed. The tallest plants were those at intermediate densities and biomass
allocation to stems increased with density. This increase was at the expense of fruit
production which decreased markedly with plant density.

To conclude, maximum above-ground biomass of R *obiusifolius monocultures
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Fig. 5.25. The effect of plant density on nutrient cocentration in Rumex *abiusifolius tissues. Full line -
significant (P<0.05), dashed line — non-significant relationship (P >0.05).

ginning of July, a large number of plants remained sterile because the experiment be-
gan too late in the season (in the beginning of May). The proportion of sterile plants
increased with plant density and more plants of R. *sylvestris failed to flower than of
R. *obtusifolius at any density (Table 5.3). Above-ground biomass of R. *obuusifolius
was lower than that of R. *sylvestris, except for the highest density (Fig. 5.27). If only
plants with generative organs are considered, the results still show the same trend but
the differences for the highest density become non-significant. Reproductive effort
(biomass of fruits/aboveground biomass) decreased with increasing density in both
subspecies (Fig. 5.27c). If only fruiting plants are considered, the trend ceases in R.
*sylvestris but is still significant in K. *obtusifolius (Fig. 5.27d). Therefore, small fer-
tile plants of R. *obtusifolius allocated less biomass 1o reproduction than small plants
of R. *svivestris. In large plants no difference was found.

Biomass of fruits was closely related to biomass of stems and leaves in fertile plants
of both subspecies (Fig. 5.28). The slope of the line, describing the relationship be-
tween dry mass of fruits and dry mass of stems+leaves was the same in both subspecies
(t = 0.019, P> 0.05), However, the increment of the line was significantly higher in R.
*sylvestris than in R, *obmusifolius (1 = 6.5, P< 0.01). This means that the minimum
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Table 5.3. The effect of plant density on the proportion of sterile plants in monospecific stands of R
*obfwsifolius and R *sylvestris in a one-season experiment.

Density/m? 4 8 18 30
R. *obtusifolius 0 8.3 5.6 244
R. *syivesiris 12.5 3.£.J 275 0 ;ﬁ.;]

biomass of stems aves nee. :

R ‘I’.’h!llvi,f;lf::;l'h ‘:;‘id k’-“_% needed for flowering was smaller in R, *sylvestris than in

erispes by R &Ug:’v&" “"{‘“’“0“ to reproductive structures was studied in R
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isa rﬁn?;i;,ﬁin:;r?:gglcﬂl;? fi'f;"“"“ geographical regions was the same. R. crispus

1983a.b) With several \'arl:(;liesln urope (Hume & Cavers 1982a,b; Akeroyd & Brigs
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Fig. 5.27. The effect of density on aboveground biomass (a, b) and reproductive effort (¢, d) in Runex
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tributions along the soil moisture gradient (see above) a difference in their tolerance to
anacrobic conditions can be expected. Two experiments were designed in order to test
the effect of water-table on growth of R. obtusifolius. The first experiment studied the
effect of a stable water table on growth and biomass allocation in R. *obrusifolius. The
second studied the effect of floods with different duration and timing on growth of R.
*sylvestris and R. *obmusifolius using alternating waterlogged and mesic conditions.

The effect of different water-tables on biomass of R. *obtusifolius

At the beginning of May, seedlings of R. *obtusifolius were planted in containers filled
with a sandy soil at a density of 32 plants/m?. Six levels of water-table ranging from
20 to —70 cm were used. The rectangular plots were 0.5 m* in size and three repli-
cates were used. Aboveground biomass of individual Rwmex specimens was harvested
at the end of June. Total root biomass was estimated for each plot. The roots were
washed out on a | mm sieve and divided into two fractions with root diameter less than
and more than | mm. The biomass was dried at 90°C and weighed.

The only treatment which differed from the others was that of the highest water-ta-
ble (Table 5.4). Plants grown at other water levels had approximately the same
aboveground biomass, belowground biomass and total biomass. There was no differ-
ence in reproductive effort at all. Root/shoot ratio increased with increasing water-ta-
ble but root biomass was independent of it, Vertical distribution of biomass was mark-
edly affected in the belowground fraction by water-table level (Fig. 5.29). Only a small
fraction of roots penetrated in the anaerobic environment below the water-table at any
level of water-table. Accumulation of roots (especially thin roots) in the soil horizons
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near the soil surface was apparent with a decrease of the thickness of the aerated soil
layer. In contrast, except for the treatment with the highest water-table (Fig. 5.29),
there was hardly any difference in vertical distribution of aboveground biomass. If the
soil was not flooded R. *obtusifolius plants utilised nutrients from the whole soil pro-
file. They hardly penetrated or survived in the anaerobic environment below the water-
table however.

The rooting pattem of R. *obrusifolius suggests that the absence of the subspecies in
tall herbaceous vegetation along the LuZnice River may be caused by its intolerance to
the high water-table (cf. Voesenck & Blom 1987). From this experiment it may be
concluded that R. obrusifolius may tolerate a stable water level as high as 30 cm below
:"::;‘ S;’l'lh‘?;l:?rc'iv;‘l"':':"l’t“’ f‘?Pﬂfcpt di['ﬁcul!ics. Roots accumulate in the upper soil hori-

evels, however, their total amount is not affected. In the above-

%mund biomass, the effect of increasing water level becomes significant if less than
30 em of aerated soil is available,

The effect of water reoi y
eflect of water regime alteration on R. *obtusifolius and R. *sylvestris

subspecies (altogether 320 indiviq nl {emperature. After two weeks, seedlings of both
filled by a nutrient-poor subst ua's) Were planted in pots, 10 x 10 x 15 cm in size,
freely drained conditions (mes; # (@ mixture of sand and loam) and kept in mesic
of pots were waterlogged in as“; environment). After nine days a randomly chosen half
was then alterated i one half O?tamcr (waterlogged environment). The water rt‘;‘-”“"
Days 22, 44 and 68 5o thy g ¢ OF the randomly chosen pots in all treatments again 0"
at the end (Day 101), s a!‘ca\lmenls differing in their history of water regime aros¢
Penods which started g1 5 difrmngem“m resulted in different lengths of waterlogging
¢ight plants (afier the last srent age of the plants studied. At the end of each pero

from each treatment, ghe ]ealf)c:od Oy SiX plants remained) were randomly selecte

riod) and after that, plang bios.. O eI leaves was measured (except for the last pe

biomass
WaS separated into three categories — laminae, pel
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Table 5.4. The effect of water-table on biomass allocation in Rumex *obtusifolins,

Jater leve! 0.7 0.6 0.5 0.4 0.3 0.2 Sigmif.
Water level (m) Sl
Red 2 29.3 23.6 n.s.
Roots 19,5 26.1 30.7 369 AR 23,

Stems 115.0 97.1 109.6 1064 97.8 57.6 P<0.05
Leaves 37.2 35.2 46.4 388 32.8 16.2 P<0.05
Fruits 97.0  109.0 02,5 126.4 79.2 S68  P<0.05
Total 2887 2674 279.2 108.5 239.1 1541 P<0.05
Root/shoot 0,16 0.11 0.12 0.14 0.14 (l.l}: P<0.05
Reproductive effort  0.39 0.45 0.37 0.47 (.38 0.4 n.s. o
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Fig. 5.29. The effect of water-table on vertical distribution of biomass in Rumex *obtusifolius.

oles and roots — dried at 90°C and weighed. The diﬂ'crcncc?‘_ bctwccn‘subs?ccws er;?e
significant in most biomass and allocation parameters (I:‘lbI? S:Sd): P?}ﬂl:i sﬂ'uci
*obtusifolius were bigger, produced more leaves and had gr;alur t I'Ol‘lll“slis.‘ e
of waterlogging on total biomass and its components wn n??-'mﬁ';" "-"::iﬁcan)l( (Ta-
plants except for laminae (Table 5.5b), whgrca_s luu.:r it bcu.mlu,b‘ng ) y‘ S:ﬁd Frasihe
ble 5.5¢). In contrast, the effect of subspecies vldcntuly on tota 1 mm;_ls‘fa i e excr:};t
nents was very marked in the first harvest (asloke) an;! 1[1(:{1 ““lept ab:;v;: round
for aboveground biomass and laminae (_I ab_ts: 5.5¢). The (IE cr(.m;.s "1h 4 *ﬁbrusi-
biomass and its components were non-significant almm'lg lfm."!“cn]fi.\,.w ]am.s Sy
Jolius, except for laminae, petioles and abovcgroupd bloni:‘_is: ]m o.s:. (']?uble S 50)R
ences in belowground and total biomass emerged in the third harve 5.5¢). R.
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allocation in two subspecies of Rumex obtusifoliys
Tha effec aterlogging on hiomass
Table 5.5. The effect of water

Table 5.5, (n) Harvestatday?.
Jablediz 8 BTV
P (t-1est)

<(.0001
Roots <0.001
Laminae <0.0005
Petioles <0.0005
Above-ground biomass (AB) : (:l:]UU:i
Root/Tatal biomass* NS ;
RootTotal biomass** N;i
Petioles’ AB* : f} (4001
Maximum leaf length 5 UAUIIUﬁ
Leaf area/leaf” 20,0005
Leaf area/plant _'”:”5 g

Number of leaves/plant
Total biomass <0.0001 i v

Thf A

DF = 14; * - angular transformation performed before testing; "~ DF = cffect of total biomass

removed before testing; AB — above-ground biomass

Table 5.5, (b) Harvest at day 44.

P (ANOVA)

Subspecics Treatment Subspecies # Treatment
DF (1,31) (1,31) (1,31)
Roots <0,0005 NS NS
Laminac <0.0005 <(0,05 NS
Petioles <0005 NS NS
AB <0.0005 NS NS
RootTotal biomass* NS NS NS
Root/Total biomass** NS NS -'iI] 05
Petioles/AB* NS <0.01 N‘;. ]
Max. leaf length <0,0001 N‘}. 5
Leaf area/leaf™ <0.0001 N.K; NS‘
Leaf arca/plant <0.0001 NS N5
;Jun;h:rr of leaves/plant NS NL; ::
otal biomass < Q ?

0.0005 NS NS

angular transformation performed before lesting; **

DF = (1,153); AB - above-ground biomass effect of total biomass removed before testing;

*svlvestris revealed a differe £on

in the second harvest ((IILFI?I.{L; tSII;(;SI::lI:!:c;. l.hcrc were no differences among treatments
ter regime produced mostly m'urc i)i Lu‘_lb older plants subjected to an alternating wa-
laminae) than the other ones, Leaf f""ﬂSS (viz. total biomass and partly also roots and
than in R *sylvestris in lhe” oun '-I!rca (LA) per plant was higher in R. *obtusifolius
were larger than those of R ‘5:’)!1 , ,[,-lel.l?lants (Table 5.5a), Leaves of R, *ul)nr.s’i."fr)ﬁr.'.\»
plants waterlogged fcpcatcdl syivestris in all treatments except for seedlings and older
¥ or for long periods (Table 5.5¢). There was no differ-

ence amﬂng lrcalmcnls in lh ]. R ‘\‘ irast to the oth
. b € mean A Or Vi i
Subs])eci{.s. IIIC Ill.llllbcl Uf lcavc&- Vils ]‘L‘Ia i '_)’!V{’.&Hf.\' |CZlVCS In contrast l . l] .

leaves per plant. R. *obusifoli ted 1o the LA per plant catiglze of
first period (Table ;fg:;.stf?\fgls h:{d more leaves than . pn-,,.,,}‘,];.?;i‘,m:n;;L(;::r;:;”‘w
*svlvestris, There was atr.cnd ocfr dddy 4-4 however, more leaves \:VI.:I'L‘ found in K.
both taxa. The biomass of petio] ‘yccrcasmg number of leaves in waterlogged plants in
and aboveground biomass (; - —:J aboveground biomass was inde acmlcnlfhbolli of total

080 and ~0.079; n « 320, P> ().ll(l in both cases). At
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Table 5.5. (¢) Harvest at day 101,

P (ANOVA)

Subspecies I'reatment Subspecies * Treatment
DF (1,95) (7,95) (7,95)
Roots NS <0.0001 <0.0001
Laminae <0.0005 <0.0001 <008
Petioles NS <0.01 <0.005
AB <0,008 <0,0001 <0.01
Root/Total biomass* <0.0001 <0.0001 <005
Root/Total biomass** <0.0001 <0.0001 <005
Petioles/AB* =0.0001 <0.0001 NS
Max. leaf length <005 <0.0001 <0.05
Total biomass NS <0.0001 <0.0001

¢~ angular transformation performed before testing; ** - effect of total biomass removed before testng;

A~ above-ground biomass

the beginning of the experiment, there was no difference between subspecies (Table
5.5a). Later, R. *obtusifolius invested relatively more aboveground biomass into peti-
oles than did R. *sylvestris. With a few exceptions, all waterlogged plants invested
relatively more aboveground biomass in petioles than plants grown in mesic condi-
tions.

Summarising, the experiment with alternating water regime showed that both sub-
species of R. obtusifolius suffer from waterlogging, The effect of the differences in the
subspecies-specific seed size diminished after about three weeks. R. *sylvestris pro-
duced more leaves and allocated less biomass into petioles than R. *obrusifolius. Peti-
ole elongation has been shown to correlate with species’ ability to adapt to flooded
habitats in Rimex (Voesenek & Blom 1989; Voesenck, Harren ef al. 1990; Voesenck,
Petrik ¢f al. 1990; van der Sman AJM. et al. 1991; Voesenek et al. 1992; Voesenek et
al. 1993). As the aboveground biomass is also lower and root/shoot higher in R.
*obtusifolius than in R. *sylvestris it may be concluded that £, *sylvestris is better
adapted to waterlogging than the other subspecies.

The effect of neighbouring aboveground vegetation on R, *obtusifolius and R.
*splvestris

To test the effect of interactions between R. obtusifolius and other species in grass-
lands, a one-season experiment was carried out in the field at the study site on the
Luznice floodplain. Six localities were chosen, three of them with R. *obuusifolius and
three with R. *sylvestris. Twenty target Runex specimens were randomly selected on
cach locality and cireular plots, 1 m in diameter, were fixed. Another ten randomly
placed plots without Rumex were established as controls, In 10 plots with Rumex speci-
mens, aboveground biomass of all species except R. obtusifolius was removed. This
was done three times: in the beginning of April, May and June on all the plots. The ex-
perimental plots were harvested in the end of June, before the meadows were mown.
Aboveground biomass of target plants and all other species to a distance of 0.5 m was
cut, dried and weighed. -

There was a considerable difference in results between plots (Fig. 5.30). On the
heavily fertilised plot (Plot 1), R. sobiusifolius was strongly suppressed by neighbour-
ing vegetation. On other plots the effect of neighbouring plants was much weaker and
until some threshold value of biomass of neighbouring plants was reached growth of
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Fig. 5.30. The effect of neighbouring vegetation on aboveground biomass of R. *obrusifolius (Plots 1-3) and
R *sylvestris (Plots 4-6). Significant relationships are fitted by second order polynoms,

Rumex plants was not affected. On an old-field with a sparse vegetation dominated by
Poa pratensis (Plot 6) no effect of intra-specific competition on R. *sylvestris was
found. The other extreme was a wet meadow with Phalaris arundinacea (Plot 4) where
biomass of R. *sylvestris was always low. This can be explained by the anaerobic soil
conditions which are detrimental for Rumex (see above and Blom et al. 1990). In con-
trast to lhg other _st_lhspmes, R. *sylvestris could survive there, but its optimum is in
?l?‘rc mesic conditions. In fertilised grasslands with a vigorous vegetation, R. obtusi-
olius was s S CSS¢ 4| 1 i I
'\'cgelaﬂo‘:f “:imrgi?n”{i s}:p]nr}u_mddby neighbouring vegetation. After surrounding
as oved, 1t achieved an extremely high biomass i i
: ss in comparison with
closed grasslands. = ’ ey
Jeangros & Noberger ¢ ifolius i iti i
s Oé,m i dg. (1_992) found lh:zl R. obtusifolius is less sensitive to shading
grassland species because of a greater incre

: : ase in specific F area in
shaded leaves. This adaptation ma i pecific leaf area 1

tall herbaceous vegetation. Similaryr:s:::;:?iiz st TSN enae eompetition
docks (Haugland 1993). However, R. obfusi ’IC I?Tc_:senled a!sg for other broad-leaved
not only by competing for light '1|!1d 1l1u(:r)i:|‘1‘:;‘o(;:/;5] lmcract‘sr \rnh Rihsiemendow; plans
allelochemi e R R clzer et al. 1984). It may also release
1987; Ca?jaliraftnt;‘}ségp?;?nf 8¢l=rmmm.0n and growth of other p]amsy (Lutts et al.
competition measured as a biem;ss:rlssc’f l?m experiment suggest that the intensity of
ductive than in unproductive envi pon:,.e ur.'hc target plant is much higher in pro-

tronments. This supports the view of Grime (1979;

S¢e alSD Gmcc 1991 ‘0] di CUS I 100 55 1nlense
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Competition between subspecies of Rumex obtusifolius

Most plants of R. *obusifolivs

area. They come into g;ﬁﬁﬁ;’,‘f R. *sylvesuris grow at low densities in the study

with a high nutrient supply where dcr infrequently, except for heavily disturbed areas
ensity of R. obusifolius may be relatively high. As
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Fig. 5.31. De Wit's diagrams of competition between R *obtusifolius and R. *syfvestris. N1, N2 and N3
denote fertilisation levels.

it has been shown that demands for basic nutrients of the subspecies are not much dif-
ferent, competition between them could play a significant role. As the species prefer
soils with a high nutrient content (Gebauer er al. 1984, Melzer et al. 1984), especially
in nitrogen (Jeangros & Noberger 1990), nutrient availability seems to be a factor
which could potentially mediate competition between the two subspecies. To test this,
a one-season experiment using a classical de Wit's arrangement was carried out. Six-
teen plants of the respective subspecies were planted per m? in monocultures and
mixed in other three treatments so that the total density of plants was kept constant.
The plots were established on sandy soil where nutrient availability was too low to
cover demands of R. obtusifolius. The plots were fertilised with three levels of nutri-
ents: N1 — 1.6 g of nitrogen, 1.8 g of K,O and 1.8 g of P,Oy per m?, N2 - 5.0 g of ni-
trogen, 5.5 g of K,O and 5.5 g of P,0 per m? and N3 — 15.0 g of nitrogen, 16.5 g of
K,O and 16.5 g of P,O, per m*.

“Total biomass of Rumex plants was the highest at N2 and lowest at N3, irrespective
of the subspecies and subspecies mixtures (Fig. 5.31). Growth of individual subspecies
differed between nutrient levels. Under the highest level (N3) the subspecies did not
differ — they both suffered from the too-high nutrient concentration in the same way. R.
*obtusifolius was suppressed at the lowest nutrient level (N1) whereas R. *splvestris
did not respond in any way. At the medium nutrient level (N2) where the highest
biomass was obtained, total biomass was apparently lower for mixtures than for
monocultures, This indicates a negative effect caused by allelopathy for example.

To summarise, the relationship between R. *obtusifolius and R. *sylvestris may vary
in dependence of a particular nitrogen level. Under stressed conditions c;\usc‘:d by toxic
levels of nutrients, either no difference in growth between subspecies was found or R.
*obtusifolius was weaker. Under optimum conditions plants of both subspecies showed
a ncg;ﬂiVL‘ effect on each other. Under low nutrients R. *obtusifolius was supprcsscc_l _by
R. *sylvestris. At a growth stage of the young plants wh.crc_thcy are 11:\;:b!c 1o uulgse
water from deeper soil horizons, a mutualistic rcl_nlic.mrjlnp_ (mch‘:pcndcnl of subspecies
identity) was observed (Klimes, unpubl.). A shading of soil surface by leaves prevents
drying out of the soil during sunny spring days. Thc_rcl'orc. the plants planted at higher
densities do not suffer from a low water availability and grow better than those at
lower densities.

The arrangement of the de
liffe ef af. 1984: Firbank & Watkinson 1985;
Aarssen 1989). The method 1s apparently not

Wit's competition experiments has been criticised (Jol-
Connolly 1986, 1987, 1988; Taylor &
appropriate for pairs of plants differing



L Klimeg

176 s

e ——
R

Jhitecture and life history, and l"'Ulli"'i“"_ﬁ are ““\\:iﬁt‘ for the 4
4 "Ml‘ t,\ the two studied subspecies of R obtusifolius are
of plants. AS most studies) and the density used in the exXperimen,
y found in stands where R. obtusifolius prevails iy is
‘e method is appropriate (see also Berendse 1994 for

markedly in size, i
plied total density of plan .
similar (not even distinguished in
corresponded to the lnmdnl dcnsﬂl ;
felt that, in this particular case, the

discussion).

\'L‘l'_\‘

Summary and predictions

1t was shown that the plants belonging 1o suhspc.c‘i.c:a:_beif-‘-\‘flﬂlf'f'-’l{\"illl‘l.d subspecies syl-
estris differ not only in morphology and local dlblll'llll ion but a .‘s(? |‘n onloguwsm.
vestris dif : e and tolerance to waterlogging. The results also indj.
henology, density-dependence and toferail i B R B
I,‘,“‘ that the studied taxa represent well defined taxonomic units n ih'u studied arca, g
:'T\':'}\'c;fr.‘.\‘ colonises more natural habitats than the (‘)lhcr h‘\llhﬁi?{t‘f‘lt‘ﬂ ﬁ:d is .h‘cl!cr
adapted to competition, shading and high water .I?VCI“"_ By L‘O‘ﬂllf.t.ht.‘lf. rJlrf::.\'J/r:ffaf,x
tolerates extremely high nutrient levels and its initial gmwth is I.n._lcn 111;}11 that of &
ssplvestris, It follows (i) from the analysis of the recent dllstl'll)llll()l'l l‘)f Rumex taxa
albng the Luznice River and (i) from rcsu['lﬁ frgm the cxpcrnnclnls carried out th-:n R.
*obtusifolius may invade new areas if fertilisation lc.vcls and disturbance by agricul-
tural machines increases. A similar trend in spreading can be expected also in R.
fsylvestris, but on more natural places only.

In the near future the two subspecies may come more frequently into contact where
intensification of agricultural practices disturbing plant cover continues, A hybridisa-
tion between them may lead to prevalence of the transitional types on many places and
local extinetion of the typical R, *obtusifolius and R. *sylvestris. Flood frequency and
duration is unpredictable in the study area both within and between years. After long
periods of flooding R. *obtusifolius may retreat to some extent. However, because of
the high amounts of Rumex diaspores available anywhere in the study area the local ex-
tinction will be probably compensated by new colonisations or by regeneration from
seed bank.

If regular management ceases, both subspecies of R. obmusifolius will decrease in
abundance. This is because of two principal factors, First, an invasion of tall competi-
tive herbs (Unrtica dioica, Phalaris arundinacea) shading other plants can be expected.
They suppress most of the meadow plants including Rumex species. The second reason
15 probably even more important; accumulation of litter in unmown meadows prevents
ﬁce:rc‘:.‘:t;m\l:fg?c]?fmf’y c;g::;ljrrlclsti:i\t islclcds;-1 Tlll}ls. ag'cing of lemi,\' p01311lzuions can bc- c;—
*svlvestris tolerates better com mtii:io:ecf o 01 S e 4 the.spccwsl. o ] l
meadows may be Tonger than thlat i R‘ :Om l."? t_)lher species its persistence in uncu

. Yobtusifolius,
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