Methods in Ecology and Evolution

Tutorial

Quantifying the relevance of intraspecific trait variability for functional diversity

Francesco de Bello, Sandra Lavorel, Cécile H. Albert, Wilfried Thuiller, Karl Grigulis, Jiři Dolezal, Štěpán Janeček and Jan Lepš

Intraspecific trait variability is a crucial, often neglected, component of functional diversity (i.e. the extent of trait dissimilarity in a given ecological community).
e.g. traits $=$ plant height, n° of leaves, n° of flowers...

[^0]
Two new methods proposed

Quantifying the extent of within- vs. between-species functional diversity (FD) within different communities

2 Decomposing the effects of species turnover and intraspecific trait variability in FD across communities

Use of the R functions designed for the first method

Quantifying the extent of within- vs. between-species functional diversity (FD) within different communities

Decomposing the effects of species turnover and intraspecific trait variability in FD across communities

Within each community (plot) the functional trait diversity can be partitioned into effects due to:

Between species FD: extent of trait dissimilarity in a community because of differentiation between coexisting species

Within species FD: extent of trait dissimilarity in a community because of intraspecific trait variability

Vs.

APPROACH: decomposition of total community trait variance

Total diversity $=$ Between species div. + Within species div.

ADVANTAGES

-Take into account different type of species abundances
-Similar to the decomposition with the Rao quadratic entropy

- Similar to PERMANOVA and other existing mathematical tools
-Use with single and multiple traits

Total diversity $=$ Between species div. + Within species div.

Calculated for each community (plot) separately!!

Example:
Comm2 has lowest within species diversity, but highest between species and total diversity

Total diversity $=$ Between species div. + Within species div.
3 possible ways to calculate the "weight" of each species (see Eqn. 3 in the paper)

R scripts
(in the paper Appendix)

1 all species have the same contribution (i.e. $1 / n s p$, nsp=number of species in a plot)

2 species contribution is given by their abundance in classic relevés (cover, biomass etc..)

3 species contribution is given by the number of
RaoAdo.r individuals sampled for trait measurements

Preparing the data for R

3 matrices needed (FOR EACH COMMUNITY/PLOT):

Trait values for different individuals

Data
preparation

The following examples are based on virtual data as used in the Appendix example

The R functions are applicable to your real data when formatted as shown in the virtual examples

Data
preparation

1 TRAIT XINDIVIDUAL

For each trait (e.g. plant height, leaf area etc..), a vector with the trait value for different individuals within each species

Example: for plant height, 6 individuals were measured for species 1, 8 individuals for species 2 , 10 for species 3 and 16 for species 4 .

Species	Trait value (e.g. height in cm)
ind1 for Sp1	1
ind2 for Sp1	2
ind3 for Sp1	3
ind4 for Sp1	4
ind5 for Sp1	5
ind6 for Sp1	6
ind1 for Sp 2	2
ind2 for Sp2	3
ind3 for Sp2	4
ind4 for Sp2	5
ind5 for Sp2	6
ind6 for Sp 2	7
ind7 for Sp2	8
ind8 for Sp2	9
ind1 for Sp3	1
ind2 for Sp3	2
ind3 for Sp3	3
ind4 for Sp3	4
ind5 for Sp3	5
ind6 for Sp3	6
ind7 for Sp3	7
ind8 for Sp3	8
ind9 for Sp 3	9
ind10 for Sp3	10
ind1 for Sp4	4
ind2 for Sp4	6
ind3 for Sp4	8
ind4 for Sp4	10
ind5 for Sp4	12
ind6 for Sp4	14
ind7 for Sp4	16
ind8 for Sp4	18
ind9 for Sp4	2
ind10 for Sp4	4
ind11 for Sp4	6
ind12 for Sp4	8
ind13 for Sp4	10
ind14 for Sp4	12
ind15 for Sp4	14
ind16 for Sp4	16

preparation

MATRIX FOR EACH COMMUNITY SAMPLED

Matrix
2a SPECIES IDENTITY
This matrix denotes species identity of each individual collected, as a dummy code.

Species	Sp1	Sp2	Sp3	Sp4
ind1 for Sp1	1	0	0	0
ind2 for Sp1	1	0	0	0
ind3 for Sp1	1	0	0	0
ind4 for Sp1	1	0	0	0
ind5 for Sp1	1	0	0	0
ind6 for Sp1	1	0	0	0
ind1 for Sp2	0	1	0	0
ind2 for Sp 2	0	1	0	0
ind3 for Sp2	0	1	0	0
ind4 for Sp2	0	1	0	0
ind5 for Sp2	0	1	0	0
ind6 for Sp2	0	1	0	0
ind7 for Sp2	0	1	0	0
ind8 for Sp2	0	1	0	0
ind1 for Sp3	0	0	1	0
ind2 for Sp3	0	0	1	0
ind3 for Sp3	0	0	1	0
ind4 for Sp3	0	0	1	0
ind5 for Sp3	0	0	1	0
ind6 for Sp3	0	0	1	0
ind7 for Sp3	0	0	1	0
ind8 for Sp3	0	0	1	0
ind9 for Sp3	0	0	1	0
ind10 for Sp3	0	0	1	0
ind1 for Sp4	0	0	0	1
ind2 for Sp4	0	0	0	1
ind3 for Sp4	0	0	0	1
ind4 for Sp4	0	0	0	1
ind5 for Sp4	0	0	0	1
ind6 for Sp4	0	0	0	1
ind7 for Sp4	0	0	0	1
ind8 for Sp4	0	0	0	1
ind9 for Sp4	0	0	0	1
ind10 for Sp4	0	0	0	1
ind11 for Sp4	0	0	0	1
ind12 for Sp4	0	0	0	1
ind13 for Sp4	0	0	0	1
ind14 for Sp4	0	0	0	1
ind15 for Sp4	0	0	0	1
ind16 for Sp4	0	0	0	1

Data
preparation the community are available (i.e. measured independently via classic relevés or plot record).

For computation purposes we allocate species abundance measured in the community/plot to all individuals of that particular species.

Example: the abundance could be estimated by species biomass (species $1=10 \mathrm{~g}$, species $2=20 \mathrm{~g}$, species $3=30 \mathrm{~g}$, species $4=40 \mathrm{~g}$)

Species	Sp1	Sp2	Sp3	Sp4
ind1 for Sp1	10	0	0	0
ind2 for Sp1	10	0	0	0
ind3 for Sp1	10	0	0	0
ind4 for Sp1	10	0	0	0
ind5 for Sp1	10	0	0	0
ind6 for Sp1	10	0	0	0
ind1 for Sp2	0	20	0	0
ind2 for Sp2	0	20	0	0
ind3 for Sp2	0	20	0	0
ind4 for Sp2	0	20	0	0
ind5 for Sp2	0	20	0	0
ind6 for Sp2	0	20	0	0
ind7 for Sp2	0	20	0	0
ind8 for Sp2	0	20	0	0
ind1 for Sp3	0	0	30	0
ind2 for Sp3	0	0	30	0
ind3 for Sp3	0	0	30	0
ind4 for Sp3	0	0	30	0
ind5 for Sp3	0	0	30	0
ind6 for Sp3	0	0	30	0
ind7 for Sp3	0	0	30	0
ind8 for Sp3	0	0	30	0
ind9 for Sp3	0	0	30	0
ind10 for Sp3	0	0	30	0
ind1 for Sp4	0	0	0	40
ind2 for Sp4	0	0	0	40
ind3 for Sp4	0	0	0	40
ind4 for Sp4	0	0	0	40
ind5 for Sp4	0	0	0	40
ind6 for Sp4	0	0	0	40
ind7 for Sp4	0	0	0	40
ind8 for Sp4	0	0	0	40
ind9 for Sp4	0	0	0	40
ind10 for Sp4	0	0	0	40
ind11 for Sp4	0	0	0	40
ind12 for Sp4	0	0	0	40
ind13 for Sp4	0	0	0	40
ind14 for Sp4	0	0	0	0
ind15 for Sp4	0	0	0	0
ind16 for Sp4	0	0	0	0
		0	0	0

TRAIT DISSIMILARITIES

TRAIT \times INDIVIDUAL

Species	Trait value (e.g. height in cm)	
ind1 for Sp1	1	
ind2 for Sp 1	2	
ind3 for Sp1	3	Matrix
ind4 for Sp1	4	Matrix
ind5 for Sp1	5	
ind6 for Sp 1	6	
ind1 for Sp2	2	
ind2 for Sp2	3	
ind3 for Sp2	4	
ind4 for Sp2	5	
ind5 for Sp2	6	
ind6 for Sp 2	7	
ind7 for Sp2	8	
ind8 for Sp2	9	
ind1 for Sp3	1	
ind2 for Sp3	2	
ind3 for Sp3	3	
ind4 for Sp3	4	
ind5 for Sp3	5	
ind6 for Sp3	6	
ind7 for Sp3	7	
ind8 for Sp3	8	
ind9 for Sp3	9	
ind10 for Sp3	10	
ind1 for Sp4	4	
ind2 for Sp4	6	
$\begin{aligned} & \text { ind3 for } \mathrm{Sp} 4 \\ & \text { ind4 for } 5 \text { 4 } \end{aligned}$	8 10	DIS
ind5 for Sp4	12	
ind6 for Sp4	14	
ind7 for Sp4	16	
ind8 for Sp4	18	
ind9 for Sp4	2	
ind10 for Sp4	4	
ind11 for Sp4	6	
ind12 for Sp4	8	
ind13 for Sp4	10	
ind14 for Sp4	12	
ind15 for Sp4	14	
ind16 for Sp4	16	

*for multiple traits, the traits needs to be normalized first (see details in the paper)

Running the R functions

REQUIREMENTS:

- Basic knowledge of R
- Having installed the package ade4
- Add the R functions to the specified working directory -(having read the paper)

R functions

I. Data set for a VIRTUAL example (as in the Appendix)

```
> tind
[1] 1 2 3 4 5 6 2 3 4 5 6 7 8 9 1
[16] 2 3 4 5 6 7 8 9 10 4 6 8 101214
[31] 1618 2 4 6 8 10121416
```


NOTE

In the Appendix the object tind is built artificially by the commands:
$>$ tind $<-\mathrm{c}(\mathrm{I}: 6)$
$>$ tind2<-c(2:9)
$>$ tind3<-c(I:I0)
$>$ tind4<-c(c(tind2*2), c(tind2*2)-2)
$>$ tind $<-\mathrm{c}($ tind I , tind2, tind3, tind4)
or INSTEAD IMPORT YOUR REAL MATRIX I

TRAIT XINDIVIDUAL object tind as for matrix I before

Species	Trait value (e.g. height in cm)
ind1 for Sp1	1
ind2 for Sp1	2
ind3 for Sp1	
ind4 for Sp1	4
ind5 for Sp1	5
ind6 for Sp1	6
ind1 for Sp2	2
ind2 for Sp2	
ind3 for Sp2	4
ind4 for Sp2	5
ind5 for Sp2	6
ind6 for Sp2	7
ind7 for Sp2	8
ind8 for Sp2	9
ind1 for Sp3	1
ind2 for Sp3	2
ind3 for Sp3	3
ind4 for Sp3	4
ind5 for Sp3	5
ind6 for Sp3	6
ind7 for Sp3	7
ind8 for Sp3	8
ind9 for Sp3	9
ind10 for Sp3	10
ind1 for Sp4	4
ind2 for Sp4	6
ind3 for Sp4	8
ind4 for Sp4	10
ind5 for Sp4	12
ind6 for Sp4	14
ind7 for Sp4	16
ind8 for Sp4	18
ind9 for Sp4	2
ind10 for Sp4	4
ind11 for Sp4	6
ind12 for Sp4	8
ind13 for Sp4	10
ind14 for Sp4	12
ind15 for Sp4	14
ind16 for Sp4	16

R functions

> indxsp
[,1] [,2] [,3] [,4] [1,] 1 , 0 , $[2] \quad 1 \quad 0 \quad 0 \quad$,
$[3] \quad 1 \quad 0 \quad 0 \quad$,
[4,] $1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$
[5,] $1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$ [6,] 10000 $[7] \quad 0 \quad 1 \quad 0 \quad$,
 $[9] \quad 0 \quad 1 \quad 0 \quad$, [10,] 00 [11,] $00 \begin{array}{llll} & 1 & 0 & 0\end{array}$
 [13,] $00 \begin{array}{llll}1 & 0 & 0\end{array}$ [14,] $00 \begin{array}{llll}1 & 0 & 0\end{array}$ [15,] $\quad 0 \quad 0 \quad 1 \quad 0$ [16,] $\quad 0 \quad 0 \quad 1 \quad 0$ $[17] \quad 0 \quad 0 \quad 1 \quad$, $[18] \quad 0 \quad 0 \quad 1 \quad$, $\begin{array}{lllll}{[18,]} & 0 & 0 & 1 & 0 \\ {[19,]} & 0 & 0 & 1 & 0\end{array}$ [20,] 0000 [21,] 000010 [22,] 000010 [23,] 0000010 [24,] 000010 $[25] \quad 0 \quad 0 \quad 0 \quad$, [25,] 0000 $[26] \quad 0 \quad 0 \quad 0 \quad$, [27,] 0000001 [28,] $\quad 0 \quad 0 \quad 0 \quad 1$ $[29] \quad 0 \quad 0 \quad 0 \quad$, [30,] 00000 [31,] 0000 [32,] 00 0 00 [33,] $\quad 0 \quad 0 \quad 0 \quad 1$ [34,] $\quad 0 \quad 0 \quad 0 \quad 1$ [35,] 000 $[35] \quad 0 \quad 0 \quad 0 \quad$, $[36] \quad 0 \quad 0 \quad 0 \quad$, [37,] 00 0 00 [38,] 00000 [39,] 00 0 0 [40,] 0000001

SPECIES IDENTITY

object indxsp (without relative abundance)
as matrix 2a before

Matrix
$2 a$

Species	Sp1	Sp2	Sp3	Sp4
Sp1	1	0	0	0
Sp1	1	0	0	0
Sp1	1	0	0	0
Sp1	1	0	0	0
Sp1	1		0	0
Sp1	1	0	0	0
Sp2	0	1	0	0
Sp2	0	1	0	0
Sp2		1	0	0
Sp2	0	1	0	0
Sp2	0	1	0	0
Sp2	0	1	0	0
Sp2	0	1	0	0
Sp2	0	1	0	0
Sp3		0	1	0
Sp3	0	-	1	0
Sp3	0		1	0
Sp3	0	0	1	0
Sp3	0	0	1	0
Sp3	0		1	0
Sp3	0	0	1	0
Sp3		0	1	0
Sp3	0	0		0
Sp3	0	0	1	0
Sp4	0	0	0	1
Sp4	0	0	0	1
Sp4	-	0	0	1
Sp4	0	0	0	1
Sp4	0		0	1
Sp4	0		0	1
Sp4	0		0	1
Sp4	0	0	0	1
Sp4	0	0	0	1
Sp4	0	-	0	1
Sp4	0		0	1
Sp4	0	0	0	1
Sp4	0	0	0	1
Sp4			0	1
Sp4	0	0	0	1
Sp4	0	0	0	1

Running the
R functions

[1,]	1	0	0	0
[2,]	1	0	0	0
[3,]	1	0	0	0
[4,]	1	0	0	0
[5,]	1	0	0	0
[6,]	1	0	0	0
[7,]	0	1	0	0
[8,]	0	1	0	0
[9,]	0	1	0	0
[10,]	0	1	0	0
[11,]	0	1	0	0
[12,]	0	1	0	0
[13,]	0	1	0	0
[14,]	0	1	0	0
[15,]	0	0	1	0
[16,]	0	0	1	0
[17,]	0	0	1	0
[18,]	0	0	1	0
9,]	0	0	1	0
[20,]	0	0	1	0
1,]	0	0	1	0
[22,]	0	0	1	0
3,]	0	0	1	0
4,]	0	0	1	0
[25,]	0	0	0	
,]	0	0	0	
7,]	0	0	0	1
[28,]	0	0	0	1
[2,]	0	0	0	
[30,]	0	0	0	1
1,]	0	0	0	
[32,]	0	0	0	1
[33,]	0	0	0	1
[34,]	0	0	0	1
[35,]	0	0	0	1
6,]	0	0	0	1
[37,]	0	0	0	1
[38,]	0	0	0	1
9,]	0	0	0	1
0,]	0	0	0	

Ibis. VIRTUAL data set for the example

```
NOTE
In the Appendix the object indxsp is built artificially by the
commands:
> indxsp<-matrix(0, 40, 4)
> indxsp[1:6, 1]=1
> indxsp[7:14, 2]=1
> indxsp[15:24, 3]=1
> indxsp[25:40, 4]=1
>
or INSTEAD IMPORT YOUR MATRIX 2
```

2a. Calculate trait dissimilarity, open and run the RaoRel.r function

Running the
R functions

R functions

$2 b$. Alternatively a matrix considering species abundance (as matrix $2 b$ before) can be used with RaoRel.r
Note the option "weight" needs to be specified otherwise the species abundance is not taken into account

Species	Sp1	Sp2	Sp3	Sp4
ind1 for Sp1	10	0	0	0
ind2 for Sp1	10	0	0	0
ind3 for Sp1	10	0	0	0
ind4 for Sp1	10	0	0	0
ind5 for Sp1	10	0	0	0
ind6 for Sp1	10	0	0	0
ind1 for Sp2	0	20	0	0
ind2 for Sp2	0	20	0	0
ind3 for Sp2	0	20	0	0
ind4 for Sp2	0	20	0	0
ind5 for Sp2	0	20	0	0
ind6 for Sp2	0	20	0	0
ind7 for Sp2	0	20	0	0
ind8 for Sp2	0	20	0	0
ind1 for Sp 3	0	0	30	0
ind2 for $\mathrm{Sp3}$	0	0	30	0
ind3 for Sp 3	0	0	30	0
ind4 for Sp3	0	0	30	0
ind5 for $\mathrm{Sp3}$	0	0	30	0
ind6 for $\mathrm{Sp3}$	0	0	30	0
ind7 for $\mathrm{Sp3}$	0	0	30	0
ind8 for $\mathrm{Sp3}$	0	0	30	0
ind9 for Sp3	0	0	30	0
ind10 for Sp3	0	0	30	0
ind1 for Sp4	0	0	0	40
ind2 for Sp 4	0	0	0	40
ind3 for Sp4	0	0	0	40
ind4 for Sp4	0	0	0	40
ind5 for Sp4	0	0	0	40
ind6 for Sp4	0	0	0	40
ind7 for Sp4	0	0	0	40
ind8 for Sp4	0	0	0	40
ind9 for $\mathrm{Sp4}$	0	0	0	40
ind10 for Sp4	0	0	0	40
ind11 for Sp4	0	0	0	40
ind12 for Sp4	0	0	0	40
ind13 for Sp4	0	0	0	40
ind14 for Sp4	0	0	0	40
ind15 for Sp4	0	0	0	40
ind16 for Sp4	0	0	0	40

$>$ Raotindp<-RaoRel(sample=indxspp, dfunc= $d^{\wedge} 2 / 2$, dphyl=NULL, weight=T, Jost=F, structure=NULL) >

3. Run function RaoAdo.r

The objects created by the functions RaoRel.r and RaoAdo.r (i.e. Raoind, Raoindp and RaoPerm; see previous pages) are LISTS where different results are stored (under " $x \times x \$$ FD")

Example with the Raoind object

```
> names(Raotind$FD)
```

[1] "Mean_Alpha" "Alpha" "Gamma" "Beta_add"
[5] "Beta_prop" "Pairwise_samples"
>

> names(Raotind\$FD)

[1] "Mean_Alpha"
[5] "Beta_prop"
"Pairwise_samples"
[J] Beta_prop" Pairwise_samples
$>$

Gamma= TOTAL community diversity (within species + between species)
Mean alpha = overall community WITHIN species FD
Alpha = trait diversity within each species
Beta_add = community BETWEEN species FD
Beta_prop = proportion accounted by community BETVEEN species FD

```
 names(Raotind$FD)
[1] "Mean_Alpha" "Alpha" "Gamma" "Beta_add"
[5] "Beta_prop" "Pairwise_samples"
> witRao<-Raotind$FD$Mean_Alpha
> witRao
[1] 9.604167
> betRao<-Raotind$FD$Beta_add
> betRao
[1] 5.671875
> totRao<-Raotind$FD$Gamma
> totRao
    Total diversity = Between species div. + Within species div.
[1] 15.27604
> (betRao+witRao)==totRao
[1] TRUE
> Raotind$FD$Beta_prop
[1] 37.12922
> Raotind$FD$Alpha
[1] 2.916667 5.250000 8.250000 22.000000
>
```

```
> names(Raotind$FD)
```

[1] "Mean_Alpha" "Alpha" "Gamma" "Beta_add"
[5] "Beta_prop" "Pairwise_samples"
> witRao<-Raotind\$FD\$Mean_Alpha
$>$ witRao
[1] 9.604167
> betRao<-Raotind\$FD\$Beta_add
> betRao
[1] 5.671875
$>$ totRao<-Raotind\$FD\$Gamma
$>$ totRao
[1] 15.27604
> (betRao+witRao)==totRao
[1] TRUE
> Raotind\$FD\$Beta_prop

The between-species FD is lower (37\%) than the within species (63\%)
> Raotind\$FD\$Alpha
[1] 2.9166675 .2500008 .25000022 .000000

```
> names(Raotind$FD)
```

```
[1] "Mean_Alpha" "Alpha" "Gamma" "Beta_add"
[5] "Beta_prop" "Pairwise_samples"
> witRao<-Raotind$FD$Mean_Alpha
> witRao
[1] 9.604167
> betRao<-Raotind$FD$Beta_add
> betRao
[1] 5.671875
> totRao<-Raotind$FD$Gamma
> totRao
[1] 15.27604
> (betRao+witRao)==totRao
[1] TRUE
```

> Raotind\$FD\$Beta_prop
[1] 37.12922
> Raotind\$FD\$Alpha
[1] 2.9166675 .2500008 .25000022 .000000

The within species trait

The within species trait variance is highest for species 4

Heigth

LDMC

Example from the paper
I. The within species effect on community FD is NOT negligible
2. It changes across traits (height and LDMC), while considering species abundances and across different environmental conditions (e.g. dry vs. wet meadows)

Methods in Ecology and Evolution

Tutorial

Quantifying the relevance of intraspecific trait variability for functional diversity

For more information, questions \& suggestions:

fradebello@ctfc.es

[^0]: How much trait variability is due to intraspecific variation within and across communities

